AP PHYSICS 1: SUMMER ASSIGNMENT 2017

Dear Future AP Physics Student,

Here is your much-anticipated summer assignment. The purpose of this assignment is not to
punish you for signing up for the course, but to help refresh your memory of some basic mathematical
principles and get a jump-start on our upcoming challenge. Before you begin the summer assignment
there are a few important points that must be addressed.

First, I am committed to helping you be successful in my class, however it is important to point
out that the course is called AP Physics. This is a true college level course, not an Honors Course. You
must be able to handle material at a college pace and be able to learn on your own from resources
provided. The key to success in a college physics course is the desire to challenge oneself and the ability
to persevere in a stressful academic environment.

Two, this course is intended for students who have completed both Honors Chemistry and
Honors Algebra Il / Trig. Of course you can still be successful if you have not completed these courses,
but be prepared to work hard! (If you are in Geometry you absolutely cannot take this class!)

Three, the summer assignment is a review of basic mathematical principals as well as an
introduction to Chapter 1 of our course. For this summer assignment you are asked to read all of Chapter
1 and then complete the assigned chapter problems (on a separate sheet of paper). You will find some
parts of this assignment easy and some parts quite challenging. You will likely have trouble finishing the
assignment, which is expected. Do Your Best! The summer assignment is needed in class on the first
day of school.

| am looking forward to working with you this fall. Physics is a fun course, and | have a great
year planned for us. Have a relaxing summer!

Mr. Sneider

For help understanding Chapter 1 refer to
https://sites.qoogle.com/site/twuphysicslessons/home/kinematics/kinematics-page-4

You may find the videos titled “22”, “24”, and “25” to be particularly helpful. Good Luck!


https://sites.google.com/site/twuphysicslessons/home/kinematics/kinematics-page-4

Chapter 1
Introduction & Mathematical Concepts

Chapter 1 Assignment

Reading
Read 11-18
CHAPTER 1 PROBLEMS:
1.1-1.3 #1a,b,c; 2,4
14 #11,13,15,18,19
1.6 # 22a,b; 23, 25a,b; 26a,b
1.7 # 32a,b; 35a,b; 36a,b
1.8 # 43, 45,47, 51a,b (We will discuss these)
SOLUTIONS TO PROBLEMS:
#1 a.5x103%¢g
b.5mg
c.5x103 ug
#2 42,200 m
#4. v =840 km /1,
#11. 713 m
#13. 80.1 km at 25.9° south of west
#15. 3.73 m
#18. ¢ =0.487 nm
#19. 35.3°
#22 a. d=64m
b. 0=237°south of east
# 23, 200 N due east or 600 N due west
# 25. a.5.70 x 102 Newtons
b. 33.6° south of west
# 26. 5.75 km at 58.5 e west of south
#32. a. 1x=143m
b. ry=-104m
# 35. a. 147 km
b.47.9 km
# 36. a. F=20x102N
b. 0 =41°
#43. 268km at 38.5°north of east
#45. 7.1 m at 9.9° north of east
#47. 30.2 m at 10.2¢
#51. a. 371 units

b. 354 units
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INTRODUCTION AND

CHAPTER

MATHEMATICAL CONCEPTS

The movie Independence Day
is a tour de force of animation
techniques, which rely
heavily on computers and
mathematical concepts. This
chapter introduces some of
the mathematical concepts—
like trigonometry and
vectors —that will be useful
throughout this book in
dealing with the laws of
physics.



2 + Chapterl / Introduction and Mathematical Concepts

1.1 THE NATURE OF PHYSICS

The science of physics has developed out of the efforts of men and women to ex-
plain why our physical environment behaves as it does. These efforts have been so
successful that the laws of physics now encompass a remarkable variety of phe-
nomena, from planets orbiting the sun to lasers being used in eye surgery.

The laws of physics are equally remarkable for their scope. They describe the
behavior of particles many times smaller than an atom and objects many times
larger than our sun. The same laws apply to the heat generated by a burning match
and the heat generated by a rocket engine. The same laws guide an astronomer in
using the light from a distant star to determine how fast the star is moving and a po-
lice officer in using radar to catch a speeder. Physics can be applied fruitfully to ob-
jects as different as subatomic particles, distant stars, or speeding automobiles be-
cause it focuses on issues that are truly basic to the way nature works.

The strength of physics derives from the fact that its laws are based on experi-
ment. This is not to say that intuition and educated guesses are unimportant. The
great creative geniuses in science, as in art and music, work in leaps and bounds
that no one can fully understand. In physics, however, a flash of insight never be-
comes accepted law unless its implications can be verified by experiment. This in-
sistence on experimental verification has enabled physicists to build a rational and
coherent understanding of nature.

The exciting feature of physics is its capacity for predicting how nature will be-
have in one situation on the basis of experimental data obtained in another situa-
tion. Such predictions place physics at the heart of modern technology and, there-
fore, can have a tremendous impact on our lives. Rocketry and the development of
space travel have their roots firmly planted in the physical laws of Galileo Galilei
(1564 —1642) and Isaac Newton (1642—1727). The transportation industry relies
heavily on physics in the development of engines and the design of aerodynamic
vehicles. Entire electronics and computer industries owe their existence to the in-
vention of the transistor, which grew directly out of the laws of physics that de-
scribe the electrical behavior of solids. The telecommunications industry depends
extensively on electromagnetic waves, whose existence was predicted by James
Clerk Maxwell (1831—1879) in his theory of electricity and magnetism. The med-
ical profession uses X-ray. ultrasonic, and magnetic resonance methods for obtain-
ing images of the interior of the human body, and physics lies at the core of all
these. Perhaps the most widespread impact in modern technology is that due to the
Jaser. Fields ranging from space exploration to medicine benefit from this incredible
device, which is a direct application of the principles of atomic physics.

Because physics is so fundamental, it is a required course for students in a wide
range of major areas. We welcome you to the study of this fascinating topic. You
will learn how to see the world through the “eyes™ of physics and to reason as a
physicist does. In the process, you will learn how to apply physics principles to a
wide range of problems. We hope that you will come to recognize that physics has
important things to say about your environment.



1.2 UniTSs

DEFINITION OF STANDARD UNITS

Physics experiments involve the measurement of a variety of quantities, and a great
deal of effort goes into making these measurements as accurate and reproducible as
possible. The first step toward ensuring accuracy and reproducibility is defining the
units in which the measurements are made.

In this text, we will stress the system of units known according to the French
phrase “Le Systéme International d’Unités,” referred to simply as SI units. This
system, by international agreement, employs the meter (m) as the unit of length, the
kilogram (kg) as the unit of mass, and the second (s) as the unit of time. Two other
systems of units are worth mentioning. The CGS system utilizes the centimeter
(cm), the gram (g), and the second for length, mass, and time, respectively, whereas
the BE or British Engineering system (the gravitational version) uses the foot (ft),
the slug (sl), and the second. Table 1.1 summarizes the units used for length, mass,
and time in the three systems.

Originally, the meter as a unit of length was defined in terms of the distance
measured along the earth’s surface between the north pole and the equator. Eventu-
ally, a more accurate measurement standard was needed, and by international agree-
ment the meter became the distance between two marks on a bar of platinum-irid-
ium alloy (see Figure 1.1) kept at a temperature of 0 °C. Today, to meet further
demands for increased accuracy, the meter is defined as the distance that light trav-
els in a vacuum in a time of 1/299 792 458 second. This definition arises because
the speed of light is a universal constant that is defined to be 299 792 458 m/s.

The definition of a kilogram as a unit of mass has also undergone changes over
the years. As Chapter 4 discusses, the mass of an object indicates the tendency of
the object to continue in motion with a constant velocity. Originally, the kilogram
was expressed in terms of a specific amount of water. Today, one kilogram is de-
fined to be the mass of a standard cylinder of platinum—iridium alloy, like the one
in Figure 1.2

As with the units for length and mass, the present definition of the second as a
unit of time is different from the original definition. Originally, the second was de-
fined according to the average time for the earth to rotate once about its axis, one
day being set equal to 86 400 seconds. The earth’s rotational motion was chosen be-
cause it is naturally repetitive, occurring over and over again. Today, we still use a
naturally occurring repetitive phenomenon to define the second, but of a very differ-
ent kind. We use the electromagnetic waves emitted by cesium-133 atoms in an

Table 1.1  Units of Measurement

System
SI CGS BE
Length meter (m) centimeter (cm) foot (ft)
Mass kilogram (kg) gram (g) slug (sl)
Time second (s) second (s) second (s)

1.2 Units + 3

Figure 1.1 The standard platinum-
iridium meter bar.

Figure 1.2 The standard platinum-
iridium kilogram is kept at the Interna-
tional Bureau of Weights and Measures
in Sévres, France.
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atomic clock like that in Figure 1.3. One second is defined as the time needed for
9 192 631 770 wave cycles to occur.®

BASE UNITS AND DERIVED UNITS

The units for length, mass, and time, along with a few other units that will arise
later, are regarded as base SI units. The word “base” refers to the fact that these
units are used along with various laws to define additional units for other important
physical quantities, such as force and energy. The units for these other physical
quantities are referred to as derived units, since they are combinations of the base
units. Derived units will be introduced as they arise naturally along with the related
physical laws.

The value of a quantity in terms of base or derived units is sometimes a very
large or very small number. In such cases, it is convenient to introduce larger or
smaller units that are related to the normal units by multiples of ten. Table 1.2 sum-
marizes the prefixes that are used to denote multiples of ten. For example, 1000
or 10% meters are referred to as 1 kilometer (km), and 0.001 or 10~ meter is called
| millimeter (mm). Similarly, 1000 grams and 0.001 gram are referred to as 1 kilo-
gram (kg) and 1 milligram (mg), respectively. Appendix A contains a discussion of
scientific notation and powers of ten, such as 10% and 1077,

Fiaure 13 A cesiumaomicclock, 1«3 LHE ROLE OF UNITS IN PROBLEM SOLVING

THE CONVERSION OF UNITS

Since any quantity, such as length, can be measured in several different units, it is

important to know how to convert from one unit to another. For instance, the foot
Table 1.2 Standard Prefixes can be used to express the distance between the two marks on the standard plat-
Used to Denote Multiples of Ten inum-iridium meter bar. There are 3.281 feet in one meter, and this number can be
used to convert from meters to feet, as the following example demonstrates.

Prefix Symbol Factor®
Tera T 10 EXAMPLE 1 ¢ The World’s Highest Waterfall
Giga® G 107 |
Mesi M 106 The highest waterfall in the world is Angel Falls in Venezuela, with a total drop of
K'Ic " 10 979.0 m (see Figure 1.4). Express this drop in feet.
ilo :

Hecto h 102 Reasoning When converting between units, we write down the units explicitly in

; the calculations and treat them like any algebraic quantity. In particular, we will take
Deka da 10 advantage of the following algebraic fact: Multiplying or dividing an equation by a
Deci d 10! factor of 1 does not alter the equation.
Centi c 107% Solution Since 3.281 feet = 1 meter, it follows that (3.281 feet)/(1 meter) = L.
Milli m 10°* Using this factor of 1 to multiply the equation “Length = 979.0 meters,” we find that
Micro i 10-° 3.281 feet

5 = [ ; — apS[ i S | o5
it " N Length = (979.0 meters)(1) = (979.0 meters) (  meter ) m
i 12 :

Fico P i ) The colored lines emphasize that the units of meters behave like any algebraic quan-
Femto f 1~ tity and cancel when the multiplication is performed, leaving only the desired unit of
* Appendix A contains a discussion of feet to describe the answer. In this regard, note that 3.281 feet = 1 meter also im-
powers of ten and scientific notation. plies that (1 meter)/(3.281 feet) = 1. However, we chose not to multiply by a factor
" Pronounced jig'a. of 1 in this form, because the units of meters would not have canceled out.

# See Chapter 16 for a discussion of waves in general and Chapter 24 for a discussion of electromag-
netic waves in particular.
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A calculator gives the answer as 3212.099 feet. Standard procedures for signifi-
cant figures, however, indicate that the answer should be rounded off to four signifi-
cant figures, since the value of 979.0 meters is accurate to only four significant fig-
ures. In this regard, the “1 meter” in the denominator does not limit the significant
figures of the answer, because this number is precisely one meter by definition of the
conversion factor. Appendix B contains a review of significant figures.

In any conversion, if the units do not combine algebraically to give the desired
result, the conversion has not been carried out properly. The next example also
stresses the importance of writing down the units and illustrates a typical situation
in which several conversions are required.

EXAMPLE 2 e Interstate Speed Limit

Express the speed limit of 65 miles/hour in terms of meters/second.

Reasoning  As in Example 1, it is important to write down the units explicitly in the
calculations and treat them like any algebraic quantity. Here, two well-known rela-
tionships come into play, namely, 5280 feet = | mile and 3600 seconds = 1 hour.
As a result, (5280 feet)/(1 mile) = 1 and (3600 seconds)/(1 hour) = 1. Multiplying
and dividing by these factors of unity does not alter an equation, a fact that will aid
us in the conversions.

Solution By multiplying and dividing by factors of unity, we can find the speed - T
limit in feet per second as shown below: Figure 1.4 Angel Falls in Venezuela

i ; 5980 | - is the highest waterfall in the world.
miles miles cel heur ce

Speed = | 65 —— | (1 = |65 =05——

pE® ( hour ) () (6J hour ) ( | mile ) ( 3600 s ) second

To convert feet into meters, we use the fact that (1 meter)/(3.281 feel) = 1:

fi v o -
SpCed = (95 _Eﬁ[_) () = (95 feet )( I meter ) = |29 meters

second second 3.281 feet second

e

A collection of useful conversion factors is given on the page facing the inside of
the front cover. The reasoning strategy that we have followed in Examples | and 2
for converting between units is outlined as follows:

REASONING STRATEGY

Converting Between Units
1. In all calculations, write down the units explicitly.

2. Treat all units as algebraic quantities. In particular, when identical units
are divided, they are eliminated algebraically.

3. Use the conversion factors located on the page facing the inside of the
front cover. In your calculations, be guided by the fact that multiplying or
dividing an equation by a factor of 1 does not alter the equation. For in-
stance, the conversion factor of 3.281 feet = 1 meter might be applied in
the form (3.281 feet)/(1 meter) = 1. This factor of 1 would be used to
multiply an equation such as “Length = 5.00 meters” in order to convert
meters to feet.

4. Check to see that your calculations are correct by verifying that the units
combine algebraically to give the desired unit for the answer,



6 ° Chapter 1 / Introduction and Mathematical Concepts

This scientist is using an automatic
pipette to deliver a fixed volume of
liquid into a sample cell.

UNITS AS A PROBLEM-SOLVING AID

In addition to their role in guiding the use of conversion factors, units serve a useful
purpose in solving problems. They can provide an internal check to eliminate cer-
tain kinds of errors, if they are carried along during each step of a calculation and
treated like any algebraic factor.

Suppose, for instance, that the tank of a car contains 2.0 gallons of gas to start
with and that gas is added at a rate of 7.0 gallons/minute. The total amount of gas
in the tank 96 seconds later can be obtained by adding the amount put into the tank
to the amount present initially. The amount put in can be calculated by multiplying
the filling rate by the time the gas pump is on. But a lack of attention to the units in
the calculation can lead to an erroneous result, as the following example shows.

Total amount _ Gas initially Gas

of gas present added
gallons
= 2.0 gallons + (7.0 ﬂ) (96 seconds)
minute

= 2.0 gallons + 672 —_g‘illOIIS_. oS

minute

The answer cannot be 2.0 + 672 = 674, because the units for the two added terms
are not the same. Only quantities that have exactly the same units can be added
(or subtracted). With the filling rate expressed as 7.0 gallons/minute, the correct
answer can be obtained only if the time of 96 seconds is converted into minutes:

) 1 minute .
Time = (96 seeends) | ——— | = 1.6 minutes
60 seeonds
gallons .
Fopl Flm()U[][ = 2.0 gallons + (7.0 ;—) (1.6 minutes)
of gas mHRuLe

= 2.0 gallons + 11 gallons = 13 gallons

As indicated by the colored lines, the units of time now cancel algebraically when
the multiplication is carried out, leaving only the desired unit of gallons. The proce-
dure of “carrying along the units™ serves as an automatic reminder to convert all
data used in a calculation into a consistent set of units.

DIMENSIONAL ANALYSIS

We have seen that many quantities are denoted by specifying both a number and a
unit. For example, the distance to the nearest telephone may be 8 meters, or the
speed of a car might be 25 meters/second. Each quantity, according to its physical
nature, requires a certain rype of unit. Distance must be measured in a length unit
such as meters. feet, or miles, and a time unit will not do. Likewise, the speed of an
object must be specified as a length unit divided by a time unit. In physics, the term
dimension is used to refer to the physical nature of a quantity and the type of unit
used to specify it. Distance has the dimension of length (symbolized as [L]). while
speed has the dimensions of length [L] divided by time [T], or [L/T]. Many physi-
cal quantities can be expressed in terms of a combination of fundamental dimen-
sions such as length [L], time [T], and mass [M]. Later on, we will encounter cer-
tain other quantities, such as temperature, which are also fundamental. A
fundamental quantity like temperature cannot be expressed as a combination of the
dimensions of length, time, mass or any other fundamental dimension.



Dimensional analysis is used to check mathematical relations for the consistency
of their dimensions. As an illustration, consider a car that starts from rest and accel-
erates to a speed v in a time 7. Suppose we wish to calculate the distance x traveled
by the car, but are not sure whether the correct relation is x = 3% or x = Jvr. We
can decide by checking the quantities on both sides of the equals sign to see if they
have the same dimensions. If the dimensions are not the same, the relation is incor-
rect. For x = _%vrz, we write the dimensions as follows, using the dimensions for
distance [L], time [T], and speed [L/T]:

2

x=3ivt
. L b
Dimensions: [L] 2 [¥:| [T = [L][T]

Dimensions cancel just like algebraic quantities, and pure numerical factors like :
have no dimensions, so they can be ignored. The dimension on the left of the equals
sign does not match those on the right, so the relation x = 1vt? cannot be correct.
On the other hand, applying dimensional analysis to x = }ot, we find that

% = e
_ | L
Dimensions: [L] 2 |i¥} [F] = [L]

The dimension on the left of the equals sign matches that on the right, so this rela-
tion is dimensionally correct. If we know that one of our two choices is the right
one, then x = 3ot is it. In the absence of such knowledge, however, dimensional
analysis cannot identify the correct relation. It can only identify which choices may
be correct, since it does not account for numerical factors like ! or for the manner in
which an equation was derived from physics principles.

1.4 TRIGONOMETRY

Scientists use mathematics to help them describe how the physical universe works,
and trigonometry is an important branch of mathematics. Three trigonometric func-
tions are utilized throughout this text. They are the sine, the cosine, and the tangent
of the angle @ (Greek theta), abbreviated as sin 6, cos 6, and tan 6, respectively.
These functions are defined below in terms of the symbols given along with the
right triangle in Figure 1.5.

B DEFINITION OF SIN 6, COS 6, AND TAN @

5 h,
sin 6 = T (1.1)
h,
cos f = ;—: (1.2)
l;
tan 0 = % (1.3)

a
h = length of the hypotenuse of a right triangle

h, = length of the side opposite the angle 6
h, = length of the side adjacent to the angle 6

1.4 Trigonometry « 7

* PROBLEM SOLVING INSIGHT
In problems that involve algebraic
manipulations, you can check for
errors that may have arisen during
the manipulations by doing a di-
mensional analysis on the final
expression.

I = hypotenuse

h,, = length of side
opposite the
angle 6

h, = length of side
adjacent to the angle @

Figure 1.5 A right triangle.
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L—na= 67.2 mﬁ

Figure 1.6 From a value for the angle
6 and the length /1, of the shadow, the
height 4, of the building can be found
using trigonometry.

The sine, cosine, and tangent of an angle are numbers without units, because each
is expressed as the ratio of the lengths of two sides of a right triangle. Example 3 il-
lustrates a typical application of Equation 1.3.

EXAMPLE 3 e Using Trigonometric Functions

On a sunny day, a tall building casts a shadow that is 67.2 m long. The angle be-
tween the sun’s rays and the ground is # = 50.0°, as Figure 1.6 shows. Determine
the height of the building.

Reasoning Since we want o find the height of the building, we begin by identify-
ing the height as the length &, of the side opposite the angle 6 in the colored right tri-
angle in Figure 1.6. The length of the shadow is the length /i of the side that is adja-
cent to the angle 6. The ratio of the length of the opposite side to the length of the
adjacent side is the tangent of the angle 6, which can be used to find the height of the
building.

Solution We use the tangent function in the following way, with ¢ = 50.0° and
h, =67.2m:

h,
tan § = — (1.3)
h,

h, = h,tan 6 = (67.2 m)(tan 50.0°) = (67.2 m)(1.19) =

The value of tan 50.0° is found by using a calculator.

The sine, cosine, or tangent may be used in calculations such as that in
Example 3, depending on which side of the triangle has a known value and which
side is asked for. However, the choice of which side of the triangle to label h , (op-
posite) and which to label h, (adjacent) can be made only after the angle 0 is
identified.

Often the values for two sides of the right triangle in Figure 1.5 are available,
and the value of the angle # is unknown. The concept of inverse trigonometric
functions plays an important role in such situations. Equations 1.4-1.6 give the
inverse sine, inverse cosine, and inverse tangent in terms of the symbols used in the
drawing. For instance, Equation 1.4 is read as “# equals the angle whose sine

ish,/h”
6 = sin-! (—”—) (1.4)
h

0 = cos”! (L) (1.5)
h

J
# = tan' (i) (1.6)
]J;I

The use of “— 1" as an exponent in Equations 1.4—1.6 does not mean “take the reci-
procal.” For instance, tan~' (i,/h,) does not equal 1/tan (h,/h,). Another way to
express the inverse trigonometric functions is to use arc sin, arc cos, and arc tan in-
stead of sin™', cos™!, and tan~'. Example 4 illustrates the use of an inverse trigono-
metric function.
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Figure 1.7 If the distance from the
shore and the depth of the water at any
one point are known, the angle @ can be
found with the aid of trigonometry.
Knowing the value of @ is useful, be-
cause then the depth d at another point
can be determined.

EXAMPLE 4 e Using Inverse Trigonometric Functions

A lakefront drops off gradually at an angle 6, as Figure 1.7 indicates. For safety rea-
sons, it is necessary to know how deep the lake is at various distances from the
shore. To provide some information about the depth, a lifeguard rows straight out
from the shore a distance of 14.0 m and drops a weighted fishing line. By measuring
the length of the line, the lifeguard determines the depth to be 2.25 m. (a) What is the
value of 67 (b) What would be the depth d of the lake at a distance of 22.0 m from
the shore?

Reasoning Near the shore, the lengths of the opposite and adjacent sides of the
right triangle in Figure 1.7 are /i, = 2.25 m and h, = 14.0 m, relative to the angle 6.
Having made this identification, we can use tan 6 = /1, /h, to find the angle in part
(a). For part (b) the procedure is similar, only farther from the shore the lengths of
the opposite and adjacent sides become /1, = d and h, = 22.0 m. With the value for
£ obtained in part (a), the tangent function can be used to find the unknown depth.
Considering the way in which the lake bottom drops off in Figure 1.7, we expect the
unknown depth to be greater than the value of 2.25 m that applies nearer the shore.

Solution
(a) Using Equation 1.3, we find that

_ h, 225 m 0.161
anf=-—">=——=,
h 14.0 m

a

Now that the value of tan 6 is known, the angle 6 can be obtained by using the in-

verse tangent:
6= tan"' (0.161) =

(b) With § = 9.15°, the tangent function can be used to find the unknown depth far-
ther from the shore, where h, = d and i, = 22.0 m. Since tan § = h,/h,, it follows
that

hy=h, tan 6

d = (22.0 m)(tan 9.15°) =

which is greater than 2.25 m, as expected.

The right triangle in Figure 1.5 provides the basis for defining the various
trigonometric functions according to Equations 1.1-1.3. These functions always in-
volve an angle and two sides of the triangle. There is also a relationship among the
lengths of the three sides of a right triangle. This relationship is known as the
Pythagorean theorem and is used often in this text.
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Figure 1.8 A vector quantity has a
magnitude and a direction. The arrow
in this drawing represents a displace-
ment vector.

B PYTHAGOREAN THEOREM

The square of the length of the hypotenuse of a right triangle is equal to the sum
of the squares of the lengths of the other two sides:

h=h2+h? (1.7

1.5 THE NATURE OF PHYSICAL QUANTITIES:
SCALARS AND VECTORS

SCALARS

The volume of water in a swimming pool might be 50 cubic meters, or the winning
time of a race could be 11.3 seconds. In cases like these, only the size of the num-
bers matters. In other words, how much volume or time is there? The “50” specifies
the amount of water in units of cubic meters, while the *“11.3” specifies the amount
of time in seconds. Volume and time are examples of scalar quantities. A scalar
quantity is one that can be described by a single number (including any units) giv-
ing its size or magnitude. Some other common scalars are temperature (e.g., 20 °C)
and mass (e.g., 85 kg).

VECTORS

While many quantities in physics are scalars, there are also many that are not
scalars, quantities for which magnitude tells only part of the story. Consider Figure
1.8, which depicts a car that has moved 2 km along a straight line from start to fin-
ish. When describing the motion, it is incomplete to say that “the car moved a dis-
tance of 2 km.” This statement would indicate only that the car ends up somewhere
on a circle whose center is at the starting point and whose radius is 2 km. A com-
plete description must include the direction along with the distance, as in the state-
ment “the car moved a distance of 2 km in a direction 30° north of east.” A quantity
that deals inherently with both magnitude and direction is called a vector quantity.
Because direction is an important characteristic of vectors, arrows are used to repre-
sent them; the direction of the arrow gives the direction of the vector. The colored
arrow in Figure 1.8, for example, is called the displacement vector, because it
shows how the car is displaced from its starting point. Chapter 2 discusses this par-
ticular vector.

The length of the arrow in Figure 1.8 represents the magnitude of the displace-
ment vector. If the car had moved 4 km instead of 2 km from the starting point, the
arrow would have been drawn twice as long. By convention, the length of a vector
arrow is proportional to the magnitude of the vector.

The practice of using the length of an arrow to represent the magnitude of a vec-
tor applies to any kind of vector. And in physics there are many important vectors,
in addition to the displacement vector. All forces, for instance, are vectors. In com-
mon usage a force is a push or a pull, and the direction in which a force acts is just
as important as the strength or magnitude of the force. The magnitude of a force is
measured in SI units called newtons (N). An arrow representing a force of 20 new-
tons is drawn twice as long as one representing a force of 10 newtons.

The fundamental distinction between scalars and vectors is the characteristic of
direction. Vectors have it, and scalars do not. Conceptual Example 5 helps to clarify
this distinction and explains what is meant by the “direction” of a vector.
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CONCEPTUAL EXAMPLE 5 e Vectors, Scalars, and the Role of
Plus and Minus Signs

There are places where the temperature is +20 °C at one time of the year and
—20 °C at another time. Do the plus and minus signs that signify positive and nega-
tive temperatures imply that temperature is a vector quantity?

Reasoning and Solution A vector has a physical direction associated with it, due
east or due west, for example. The question, then, is whether such a direction is asso-
ciated with temperature. In particular, do the plus and minus signs that go along with
temperature imply this kind of direction? On a thermometer, the algebraic signs sim-
ply mean that the temperature is a number less than or greater than zero on the scale
and have nothing to do with east, west, or any other physical direction. Temperature,
then, is not a vector. It is a scalar, and scalars can sometimes be negative. The fact
that a quantity is positive or negative does not necessarily mean that the quantity is
a scalar or a vector.

SYMBOLS USED FOR SCALARS AND VECTORS

Often, for the sake of convenience, quantities such as volume, time, displacement,
and force are represented by symbols. This text follows the usual practice of writing
vectors in boldface symbols* (this is boldface) and writing scalars in italic symbols
(this is italic). Thus, a displacement vector is written as “A = 750 m, due east.”
where the A is a boldface symbol. By itself, however, separated from the direction,
the magnitude of this vector is a scalar quantity. Therefore, the magnitude is written
as “A = 750 m,” where the A is an italic symbol.

1.6 VECTOR ADDITION AND SUBTRACTION

ADDITION OF COLINEAR VECTORS

Often it is necessary to add one vector to another, and the process of addition must
take into account both the magnitude and the direction of the vectors. The simplest
situation occurs when the vectors point along the same direction, that is, when they
are colinear, as in Figure 1.9. Here, a car first moves along a straight line, with a
displacement vector A of 275 m, due east. Then, the car moves again in the same
direction, with a displacement vector B of 125 m, due east. These two vectors add
to give the total displacement vector R, which would apply if the car had moved
from start to finish in one step. The symbol R is used because the total vector is of-
ten called the resultant vector. With the tail of the second arrow located at the head
of the first arrow, the two lengths simply add to give the length of the total displace-
ment. This kind of vector addition is identical to the familiar addition of two scalar
numbers (2 + 3 = 5), and can be carried out here only because the vectors point
along the same direction. In such cases we add the individual magnitudes to get the
magnitude of the total, knowing in advance what the direction must be. Formally,
the addition is written as follows:

R=A+B
R = 275 m, due east + 125 m, due east
= 400 m, due east

* A vector quantity can also be represented without boldface symbols, by including an arrow above the

symbol, e.g., A.

The velocity of this cyclist is another
example of a vector quantity.

Tail-to-head

A S lom

Start Finish

[ ]

i

! R
Figure 1.9  Two colinear displace-
ment vectors A and B add to give the
resultant displacement vector R.
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Tail-to-head
Figure 1.10  The addition of two per-
pendicular displacement vectors A and
B gives the resultant vector R.

Tail-to-head

(a)

(h)

Figure 1.11  (a) The two displace-
ment vectors A and B are neither colin-
ear nor perpendicular but add to give
the resultant vector R. (b) In one
method for adding them together, a
graphical technique is used.

ADDITION OF PERPENDICULAR VECTORS

Perpendicular vectors are frequently encountered, and Figure 1.10 indicates how
they can be added. This figure applies to a car that first travels with a displacement
vector A of 275 m, due east, and then with a displacement vector B of 125 m, due
north. The two vectors add to give a resultant displacement vector R. Once again,
the vectors to be added are arranged in a tail-to-head fashion, and the resultant vec-
tor points from the tail of the first to the head of the last vector added. The resultant
displacement is given by the vector equation

R=A+B

The addition in this equation cannot be carried out by writing R = 275 m +
125 m, because the vectors have different directions. Instead, we take advantage of
the fact that the triangle in Figure 1.10 is a right triangle and use the Pythagorean
theorem (Equation 1.7). According to this theorem, the magnitude of R is

R = (275 my> + (125 m)* = 302m

The angle 6 in Figure 1.10 gives the direction of the resultant vector. Since the
lengths of all three sides of the right triangle are now known, either sin 6, cos 6, or
tan 6 can be used to determine 6:

B 125 m

tan ) = — = —
A 275 m

f = tan~'(0.455) = 24.5°

= (.455

Thus, the resultant displacement of the car has a magnitude of 302 m and points
north of east at an angle of 24.5°. This displacement would bring the car from the
start to the finish in Figure 1.10 in a single straight-line step.

ADDITION OF VECTORS THAT ARE NEITHER COLINEAR
NOR PERPENDICULAR

When two vectors to be added are not perpendicular, the tail-to-head arrange-
ment does not lead to a right triangle, and the Pythagorean theorem cannot be used.
Figure 1.11a illustrates such a case for a car that moves with a displacement A of
275 m, due east and then with a displacement B of 125 m in a direction 55.0° north
of west. As usual, the resultant displacement vector R is directed from the tail of
the first to the head of the last vector added. The vector addition is still given ac-
cording to

R=A+8B

However, since the triangle in the drawing is not a right triangle, some means other
than the Pythagorean theorem must be used to find the magnitude and direction of
the resultant vector.

One approach uses a graphical technique. In this method, a diagram is con-
structed in which the arrows are drawn tail to head. The lengths of the vector ar-
rows are drawn to scale, and the angles are drawn accurately (with a protractor, per-
haps). Then, the length of the arrow representing the resultant vector is measured
with a ruler. This length is converted into the magnitude of the resultant vector by
using the scale factor with which the drawing is constructed. In Figure 1.1 1b, for
example, a scale of one centimeter of arrow length for each 10.0 m of displacement
is used, and it can be seen that the length of the arrow representing R is 22.8 cm.
Since each centimeter corresponds to 10.0 m of displacement, the magnitude of R
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(a) (b)

is 228 m. The angle 6, which gives the direction of R, can be measured with a pro-
tractor to be 6 = 26.7°.

SUBTRACTION OF VECTORS

The subtraction of one vector from another is carried out in a way that depends on
the following fact. When a vector is multiplied by —1, the magnitude of the vector
remains the same, but the direction of the vector is reversed. Conceptual Example 6
illustrates the meaning of this statement.

CONCEPTUAL EXAMPLE 6 ¢ Multiplying a Vector by —1

Consider the two vectors described below:

1. A woman climbs 1.2 m up a ladder. so that her displacement vector D is
1.2 m, upward along the ladder, as in Figure 1.12a.

2. A man is pushing with 450 N of force on his stalled car, trying to move
it eastward. The force vector F that he applies to the car is 450 N, duc
east, as in Figure 1.13a.

What are the physical meanings of the vectors —D and —F?

Reasoning and Solution A displacement vector of —D is (— D and has the same
magnitude as the vector D, but is opposite in direction. Thus, =D would represent
the displacement of a woman climbing 1.2 m down the ladder, as in Figure 1.125.
Similarly, a force vector of —F has the same magnitude as the vector F, but has the
opposite direction. As a result, —F would represent a force of 450 N applied to the
car in a direction of due west instead of due east, as in Figure 1.13b.

Related Homework Material: Question 15, Problem 66

In practice, vector subtraction is carried out exactly as vector addition, except
that one of the vectors added is multiplied by a scalar factor of —1. To see why,
look in Figure 1.14a at the two vectors A and B. These vectors add together to give
a third vector C, according to C = A + B. Therefore, we can calculate vector A as
A = C — B, which is an example of vector subtraction. However, we can also
write this result as A = C + (=B) and treat it as vector addition. Figure 1.14b
shows how to calculate vector A by adding the vectors C and —B. Notice that vec-
tors C and —B are arranged tail to head and that any suitable method of vector ad-
dition can be employed to determine A.

13

Figure 1.12  (a) The displacement
vector for a woman climbing 1.2 m up
a ladder is D. (b) The displacement
vector for a woman climbing 1.2 m
down a ladder is —D.

{a)

(h)

Figure 1.13  (a) The force vector for
a man pushing on a car with 450 N of
force in a direction due east is F.

(b) The force vector for a man pushing
on a car with 450 N of force in a direc-
tion due west is —F.

(a)

Tail-to-headﬁ

(B)
Figure 1.14  (a) Vector addition ac-
cording to C = A + B. (b) Vector sub-
traction accordingto A = C — B =
C + (—B).
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Finish

Start

X

Figure 1.15 The displacement vector
r and its vector components x and y.

+y

Figure 1.16  An arbitrary vector A
and its vector components A, and A .

Figure 1.17 This alternative way of
drawing the vector A and its vector
components is completely equivalent to
that shown in Figure 1.16.

1.7 THE COMPONENTS OF A VECTOR

VECTOR COMPONENTS

Suppose a car moves along a straight line from start to finish in Figure 1.15, the
corresponding displacement vector being r. The magnitude and direction of the
vector r give the distance and direction traveled along the straight line. However,
the car could also arrive at the finish point by first moving due east, turning through
90°, and then moving due north. This alternative path is shown in red in the draw-
ing and is associated with the two displacement vectors x and y. The vectors x and
y are called the x vector component and the y vector component of r.

Vector components are very important in physics, and two basic features of them
are apparent in Figure 1.15. One is that the components add together to equal the
original vector, as expressed by the following vector equation:

r=x-+y

The components x and y, when added vectorially, convey exactly the same meaning
as does the original vector r, that is, they indicate how the finish point is displaced
relative to the starting point. In general, the components of any vector can be used
in place of the vector itself in any calculation where it is convenient to do so. The
other feature of vector components that is apparent in Figure 1.15 is that x and y are
not just any two vectors that add together to give the original vector r; they are per-
pendicular vectors.* This perpendicularity is a valuable characteristic, as we will
s00n see.

Any type of vector may be expressed in terms of its components, in a way simi-
lar to that illustrated for the displacement vector in Figure 1.15. Figure 1.16 shows
an arbitrary vector A and its vector components A, and A . The components are
drawn parallel to convenient x and y axes and are perpendicular. They add vectori-
ally to equal the original vector A:

A=A +A,

There are times when a drawing such as Figure 1.16 is not the most convenient way
to represent vector components, and Figure 1.17 presents an alternative method.
The disadvantage of this alternative is that the tail-to-head arrangement of A, and
A, is missing, an arrangement that is a nice reminder that A, and A add together to
equal A.

The definition given below summarizes the meaning of vector components:

H DEFINITION OF VECTOR COMPONENTS

In two dimensions, the vector components of a vector A are two perpendicular
vectors A and A, that are parallel to the x and y axes, respectively, and add
together vectorially so that A = A + A .

The values calculated for vector components depend on the orientation of the vector
relative to the axes used as a reference. Figure 1.18 illustrates this fact for a vector
A. by showing two sets of axes, one set being rotated clockwise relative to the
other. With respect to the black axes, vector A has perpendicular vector components
A, and A; with respect to the colored rotated axes, vector A has different vector

* [t is possible to introduce vector components that are not perpendicular, but, in general. they are not as
useful as those introduced here.



components A " and A,’. The choice of which set of components to use is purely a
matter of convenience.

SCALAR COMPONENTS

It is often easier to work with the scalar components, A and A, (note the italic
symbols), rather than the vector components A, and A,. Scalar components are

1.7 The Components of a Vector « 15
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positive or negative numbers (with units) that are defined as follows. The compo-
nent A, has a magnitude that is equal to that of A, and is given a positive sign if A
points along the +x axis and a negative sign if A, points along the —x axis. The
component A is defined in a similar manner. The following table shows an example
of vector and scalar components:

Vector Components Scalar Components
A, = 8 meters, directed along the +x axis A, = +8 meters
A, = 10 meters, directed along the —y axis A, = —10 meters

In this text, when we use the term “component,” we will be referring to a scalar
component, unless otherwise indicated.

RESOLVING A VECTOR INTO ITS COMPONENTS

If the magnitude and direction of a vector are known, it is possible to find the com-
ponents of the vector. The process of finding the components is called “resolving
the vector into its components.” As Example 7 illustrates, this process can be car-
ried out with the aid of trigonometry, because the two perpendicular vector compo-
nents and the original vector form a right triangle.

EXAMPLE 7 e Finding the Components of a Vector

A displacement vector r has a magnitude of » = 175 m and points at an angle of
50.0° relative to the x axis in Figure 1.19. Find the x and y components of this vector.

Reasoning and Solution 1 The y component can be obtained using the 50.0° angle
and Equation 1.1, sin 0 = y/r:

y = rsin 6 = (175 m)(sin 50.0°) =

In a similar fashion, the x component can be obtained using the 50.0° angle and
Equation 1.2, cos 8 = x/r:

x = rcos 6 = (175 m)(cos 50.0°) =

Reasoning and Solution 2 The angle « in Figure 1.19 can also be used to find the
components. Since e + 50.0° = 90.0°, it follows that o = 40.0°, The solution using
« yields the same answers as in Solution 1:

y
cCosa = —
-

y = rcos a = (175 m)(cos 40.0°) =
sin @ = —

r

x = rsin a = (175 m)(sin 40.0°) =

Y
N

+x’
Figure 1.18 The vector components
of the vector depend on the orientation
of the axes used as a reference.

o
r Y
50.0°  90.0°
q

X
Figure 1.19 The x and y components
of the displacement vector r can be
found using trigonometry.

* PROBLEM SOLVING INSIGHT
Either acute angle of a right trian-
gle can be used to determine the
components of a vector. The choice
of angle is a matter of convenience.
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* PROBLEM SOLVING INSIGHT
When a vector is resolved into
components, one can check to see if
they are correct; substitute the
components into the Pythagorean
theorem and verify that the result
is the magnitude of the original
vector.

+X
Figure 1.20 The x vector component
of the vector A is zero, although the
vector itself is not zero.

Since the vector components and the original vector form a right triangle, the
Pythagorean theorem can be applied to check the validity of calculations such as
those in Example 7. Thus, with the components obtained in Example 7, the theorem
can be used to verify that the magnitude of the original vector is indeed 175 m, as
given initially:

r=112m)? + (134 m)® = 175 m

VECTORS THAT HAVE ZERO COMPONENTS

Depending on the orientation of the axes used as a reference, it is possible that one
of the components of a vector can be zero. Figure 1.20 shows an example of this
situation to emphasize that a vector is not zero merely because one of its compo-
nents is zero. In this drawing, the y vector component is itself the vector A, the x
vector component being zero. Vector A would be expressed as the sum of its vector
components according to the following vector equation: A = (0 + A|.

For a vector to be zero, every vector component must individually be zero.
Thus, in two dimensions, saying that A = 0 is equivalent to saying that A = 0
and A, = 0. Or, stated in terms of scalar components, if A = 0, then A, = 0 and
A, = 0. This seemingly trivial fact plays an important role in physics. In particular,
it will be used in Chapter 4 when we describe the equilibrium of an object by say-
ing that the net force acting on the object is zero.

VECTORS THAT ARE EQUAL

Two vectors are equal if, and only if, they have the same magnitude and direc-
tion. Thus, if one displacement vector points east and another points north, they are
not equal, even if each has the same magnitude of 480 m. In terms of vector com-
ponents, two vectors, A and B, are equal if, and only if, each vector component of
one is equal to the corresponding vector component of the other. In two dimen-
sions, if A =B, then A, = B_and A = B,. Alternatively, using scalar compo-
nents, we write that A, = B and A, = B,.

1.8 ADDITION OF VECTORS BY MEANS OF
COMPONENTS

The components of a vector provide the most convenient and accurate way of
adding (or subtracting) any number of vectors. For example, suppose that vector A
is added to vector B. The resultant vector is C, where C = A + B. Figure 1.21a il-
lustrates this vector addition,-along with the x and y vector components of A and B.
In part b of the drawing, the vectors A and B have been removed, because we can
use the vector components of these vectors in place of them. The vector component
B, has been shifted downward and arranged tail-to-head with the vector component
A . Similarly, the vector component A, has been shifted to the right and arranged
tail-to-head with the vector component B, . The x components are colinear and add
together to give the x component of the resultant vector C. In like fashion, the y
components are colinear and add together to give the y component of C. In terms of
scalar components, we can write

C,=A,+B, and C,=A + B,

The vector components C, and C, of the resultant vector form the sides of the right
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(a) (b)
Figure 1.21  (a) The vectors A and B add together to give the resultant vector C. The x and
Y vector components of A and B are also shown. (b) The drawing illustrates that C,=A, +
B.and C, = A, + B,. (¢) Vector C and its components form a right triangle.

triangle shown in Figure 1.21¢. Thus, we can find the magnitude of C by using the
Pythagorean theorem:
c=Vci+ ¢}

The angle 6 that C makes with the x axis is given by # = tan”! (C,/C,). Example 8
illustrates how to add several vectors using the component method.

EXAMPLE 8 ¢ The Component Method of Vector Addition

A jogger runs 145 m in a direction 20.0° east of north (displacement vector A) and
then 105 m in a direction 35.0° south of east (displacement vector B). Determine the
magnitude and direction of the resultant vector C for these two displacements.

Reasoning Figure 1.22a shows the vectors A and B, assuming that the y axis corre-
sponds to the direction due north. Since the vectors are not given in component form,
we will begin by using the given magnitudes and directions to find the components.
Then the components of A and B can be used to find the components of the resultant
C. Finally, with the aid of the Pythagorean theorem and trigonometry, the compo-
nents of C can be used to find its magnitude and direction.

Solution The first two rows of the table below give the x and ¥ components of the
vectors A and B. Note that the component B, is negative, because B, points down-
ward, in the negative y direction in the drawing.

Vector X component Yy component

A A, = (145 m) sin 20.0° = 49.6 m A, = (145m) cos 20.0° = 136 m
B B, = (105 m) cos 35.0° = 86.0 m B, = —(105 m) sin 35.0° = —60.2 m

C C=A,+B=1356m C,=A,+B,=76m

The third row in the table gives the x and y components of the resultant vector C:
«=A;tBandC, =A + B, . Part b of the drawing shows C and its vector com-
ponents. The magnitude of C is given by the Pythagorean theorem as

C=VC2+Cr=V(1356m)’ + (76 m)? =

(c)

(a)

Cy
(b)

Figure 1.22 (a) The vectors A and B
add together to give the resultant vector
C. The vector components of A and B
are also shown. (b) The resultant vec-
tor C can be obtained once its compo-
nents have been found.
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The angle 6 that C makes with the x axis is

76 m

G
0 = td -1 = | = te 1| —— ] = [920°
" ( & ) " ( 135.6 m )

In later chapters we will often use the component method for vector addition.
For future reference, the main features of the reasoning strategy used in this tech-
nique are summarized below.

REASONING STRATEGY

The Component Method of Vector Addition

1. For each vector to be added, determine the x and y components relative
to a conveniently chosen x, y coordinate system. Be sure to take into ac-
count the directions of the components by using plus and minus signs to
denote whether the components point along the positive or negative axes.

2. Find the algebraic sum of the x components, which is the x component of
the resultant vector. Similarly, find the algebraic sum of the y compo-
nents, which is the y component of the resultant vector.

3. Use the x and y components of the resultant vector and the Pythagorean
theorem to determine the magnitude of the resultant vector.

4. Use either the inverse sine, inverse cosine, or inverse tangent function to
find the angle that specifies the direction of the resultant vector.

SUMMARY

Physics is an experimental science that uses precisely de-
fined units of measurement. This text emphasizes SI (Sys-
teme International) units, a system that includes the meter
(m), the kilogram (kg), and the second (s) as base units for
length, mass, and time, respectively. Units play an impor-
tant role in solving problems, because the units on the left
side of an equation must match the units on the right side.
If the units on both sides do not match, either the equation
is written incorrectly or the variables and constants in the
equation are not expressed in a consistent set of units.

Trigonometry is used throughout physics. Particularly
important are the sine, cosine, and tangent functions of an
angle . These functions can be defined in terms of a right
triangle that contains 6. The side of the triangle opposite ¢
is h,, the side adjacent to 8 is &, and the hypotenuse is /1.
In terms of these quantities sin 8 = h /h, cos 6 = h,/h, and
tan 6 = h,/h,. Once the value of the sine, cosine, or tan-
gent is known, the angle itself can be obtained using inverse
trigonometric functions. The Pythagorean theorem, h? =
h? + hp2, is useful when dealing with the sides of a right
triangle.

A scalar quantity is described completely by its size,
which is also called its magnitude. For a vector quantity,
however, both magnitude and direction must be specified.
Vectors are often represented by arrows, the length of the

arrow being proportional to the magnitude of the vector and
the direction of the arrow indicating the direction of the
vector. The addition of vectors to give a resultant vector
must account for both magnitude and direction. When the
vectors are all colinear, the addition proceeds in the same
way as the simple addition of scalar quantities. When the
vectors are not colinear, one procedure for addition utilizes
a graphical technique, in which the vectors to be added are
arranged in a tail-to-head fashion. The subtraction of a vec-
tor is treated as the addition of a vector that has been multi-
plied by a scalar factor of —I. Multiplying a vector by —1
reverses the direction of the vector.

In two dimensions, the vector components of a vector
A are two perpendicular vectors A, and A that are parallel
to the x and y axes, respectively, and add together vectori-
ally so that A = A, + A . The scalar component A has a
magnitude that is equal to that of A and is given a positive
sign if A, points along the +x axis and a negative sign if A,
points along the —x axis. The scalar component A is de-
fined in a similar manner. Components provide the best
way of adding any number of vectors. A vector is zero if,
and only if, each of its vector components is zero. Two vec-
tors are equal in two dimensions if, and only if, the x vector
components of each are equal and the y vector components
of each are equal.
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PROBLEMS

Problems that are not marked with a star are considered the easiest to solve. Problems that are marked with a
single star (*) are more difficult, while those marked with a double star (**) are the most difficult.

ssm Solution is in the Student Solutions Manual. www Solution is available on the World Wide Web at

http://www.wiley.com/college/cutnell =

This icon represents a biomedical application.

» Section 1.3 The Role of Units in Problem Solving

1. ssm The mass of the parasitic wasp Caraphractus cintus can
be as small as 5 X 107° kg. What is this mass in (a) grams (g),
(b) milligrams (mg ), and (c) micrograms (ug)?

2. The distance of the Boston marathon is 26 miles, 385 yards.
What is the length of this race in meters?

3. How many seconds are there in (a) one hour and thirty-five
minutes and (b) one day?

4. A 747 jetliner is cruising at a speed of 520 miles per hour.
What is its speed in kilometers per hour?

5, ssm The largest diamond ever found had a size of 3106
carats. One carat is equivalent to a mass of 0.200 g. Use the fact
that 1 kg (1000 g) has a weight of 2.205 Ib under certain condi-
tions, and determine the weight of this diamond in pounds.

6. A bottle of wine known as a magnum contains a volume of
1.5 liters. A bottle known as a jeroboam contains 0.792 U.S. gal-
lons. How many magnums are there in one jeroboam?

7. The following are dimensions of various physical parameters
that will be discussed later on in the text. Here [L], [ T]., and [M]
denote, respectively, dimensions of length, time, and mass.

Dimension Dimension
Distance (x) [L] Acceleration (a)  [L]/[T]?
Time (1) |T] Force (F) [M]ILI/[T]?
Mass (m) [M] Energy (£) [M]IL]/[T]?
Speed (v) [L)/[T]

Which of the following equations are dimensionally correct?

(a) F = ma (dy E= max
(b x= %m-‘ () v= \IF.\‘;’.'H
(¢) E=imv

8. The variables x, v, and @ have the dimensions of [L]. [L)/[TI.
and [L]/[ T2 respectively. These variables are related by an equa-
tion that has the form ©" = 2ax, where n is an integer constant
(1. 2. 3. etc.) without dimensions. What must be the value of n. so
that both sides of the equation have the same dimensions? Explain
your reasoning.

%9, ssm The depth of the ocean is sometimes measured in fath-
oms (1 fathom = 6 feet). Distance on the surface of the ocean is
sometimes measured in nautical miles (1 nautical mile =
6076 fect). The water beneath a surface rectangle 1.20 nautical
miles by 2.60 nautical miles has a depth of 16.0 fathoms. Find the
volume of water (in cubic meters) beneath this rectangle.

#10, The CGS unit for measuring the viscosity of a liquid is the
poise [P]: 1 P =1 g/(s-cm). The SI unit is the kg/(s-m). The
viscosity of water at 0 °C is 1.78 X 10~* kg/(s-m). Express this
viscosity in poise.

Section 1.4 Trigonometry

11. The gondola ski lift at Keystone, Colorado, is 2830 m long.
On average, the ski lift rises 14.6° above the horizontal. How high
is the top of the ski lift relative to the base?

12. A hill that has a 12.0% grade is one that rises 12.0 m verti-
cally for every 100.0 m of distance in the horizontal direction. At
what angle is such a hill inclined above the horizontal?

13. ssm www A highway is to be built between two towns,
one of which lies 35.0 km south and 72.0 km west of the other.
What is the shortest length of highway that can be built between
the two towns, and at what angle would this highway be directed
with respect to due west?

14. You are driving into St. Louis, Missouri, and in the distance
you see the famous Gateway-to-the-West arch. This monument
rises to a height of 192 m. You estimate your line of sight with the
top of the arch to be 2.0° above the horizontal. Approximately
how far (in kilometers) are you from the base of the arch?

15. The silhouette of a Christmas tree is an isosceles triangle.
The angle at the top of the triangle is 30.0°, and the base measures
2.00 m across. How tall is'the tree?

16. An observer, whose eyes are 1.83 m above the ground, is
standing 32.0 m away from a tree. The ground is level. and the
tree is growing perpendicular to it. The observer’s line of sight
with the treetop makes an angle of 20.0° above the horizontal.
How tall is the tree?

#17. ssm What is the value of each of the angles of a triangle
whose sides are 95. 150, and 190 cm in length? (Hint: Consider
using the law of cosines given in Appendix E.)

%18, The drawing shows sodium and chlorine ions positioned at

{ Chlorine ion

Sodium ion (J

oz
nanometers



the corners of a cube that is part of the crystal structure of sodium
chloride (common table salt). The edge of the cube is 0.281 nm
(I'nm = 1 nanometer = 107 m) in length. Find the distance (in
nanometers) between the sodium ion located at one corner of the
cube and the chlorine ion located on the diagonal at the opposite
corner.

*19.  What is the value of the angle 6 in the drawing that accom-
panies problem 187

#%20. A regular tetrahedron is a three-dimensional object that has
four faces, each of which is an equilateral triangle. Each of the
edges of such an object has a length L. The height H of a regular
tetrahedron is the perpendicular distance from one corner to the
center of the opposite triangular face. Show that the ratio between
Hand Lis HIL = \2/3.

Section 1.6 Vector Addition and Subtraction

21.  ssm www One displacement vector A has a magnitude of
2.43 km and points due north. A second displacement vector B
has a magnitude of 7.74 km and also points due north. (a) Find the
magnitude and direction of A — B. (b) Find the magnitude and
direction of B — A.

22. A chimpanzee sitting against his favorite tree gets up and
walks 51 m due east and 39 m due south to reach a termite
mound, where he eats lunch. (a) What is the shortest distance be-
tween the tree and the termite mound? (b) What angle does the
shortest distance make with respect to due east?

23. A force vector I, points due east and has a magnitude of 200
newtons. A second force F, is added to F,. The resultant of the
two vectors has a magnitude of 400 newtons and points along the
cast/west line. Find the magnitude and direction of F,. Note that
there are two answers,

24.  The drawing shows a triple jump on a checkerboard, starting
at the center of square A and ending on the center of square B.
Each side of a square measures 4.0 cm. What is the magnitude of
the displacement of the colored checker during the triple jump?

*31.

Problems « 21

25. ssm Two ropes are attached to a heavy box to pull it along
the floor. One rope applies a force of 475 newtons in a direction
due west; the other applies a force of 315 newtons in a direction
due south. As we will see later in the text, force is a vector quan-
tity. (a) How much force should be applied by a single rope, and
(b) in what direction (relative to due west), if it is to accomplish
the same effect as the two forces added together?

26. A jogger travels due south, and in the process his displace-
ment vector has a magnitude of 4.68 km. He then jogs due west.
(a) What is the magnitude of his displacement vector in the due
west direction, if the magnitude of his total displacement vector is
7.41 km? (b) What is the direction of his total displacement vector
with respect to due south?

27. Vector A has a magnitude of 48.0 units and points due west,
while vector B has the same magnitude but points due south. De-
termine the magnitude and direction of (a) A + B and (b) A — B.
Specify the direction relative to due west.

*28. A basketball player runs a pattern consisting of three seg-
ments. The corresponding three displacement vectors A, B, and C
have equal magnitudes of 7.0 m. Displacement A is directed for-
ward and parallel to one side of the court, B is directed forward at
a 45? angle with respect to the side of the court, and C is directed
forward and parallel to the side of the court. With a scale drawing,
use the graphical technique to find the magnitude and direction of
the displacement vector for a straight-line dash between the start-
ing and finishing points.

*29. ssm www A car is being pulled out of the mud by two
forces that are applied by the two ropes shown in the drawing. The
dashed line in the drawing bisects the 30.0° angle. The magnitude
of the force applied by each rope is 2900 newtons. Arrange the
force vectors tail to head and use the graphical technique to an-
swer the following questions. (a) How much force would a single
rope need to apply to accomplish the same effect as the two forces
added together? (b) How would the single rope be directed rela-
tive to the dashed line?

2900 newtons

2900 newtons

*30. In wandering, a grizzly bear makes a displacement of 1563

m due west, followed by a displacement of 3348 m in a direction
32.0° north of west. What are (a) the magnitude and (b) the direc-
tion of the displacement needed for the bear to return to its stari-
ing point? Specify the direction relative to due east.

Vector A has a magnitude of 8.00 units and points due
west. Vector B points due north. (a) What is the magnitude of B if
A + B has a magnitude of 10.00 units? (b) What is the direction
of A + B relative to due west? (¢) What is the magnitude of B if
A — B has a magnitude of 10.00 units? (d) What is the direction
of A — B relative to due west?
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Section 1.7 The Components of a Vector

32. A displacement vector has a magnitude of 177 m and points
at an angle of 36.0° below the positive x axis. What are (a) the x
scalar component and (b) the y scalar component of the vector?

33. ssm Vector A points along the +y axis and has a magni-
tude of 100.0 units. Vector B points at an angle of 60.0° above the
+x axis and has a magnitude of 200.0 units. Vector C points along
the +x axis and has a magnitude of 150.0 units. Which vector has
(a) the largest x component and (b) the largest y component?

34. A bicyclist is headed due east. A 5.00-m/s wind is blowing
partially into the rider’s face and is coming from a direction that is
35.0° south of east. The speed and direction of the wind constitute
a vector quantity known as the velocity. In effect, then, the rider
must “pump” against a component of the wind’s velocity vector.
What is the magnitude of this component?

35. An ocean liner leaves New York City and travels 18.0°
north of east for 155 km. How far east and how far north has it
gone? In other words, what are the magnitudes of the components
of the ship’s displacement vector in the directions (a) due east and
(b) due north?

36. Your friend has slipped and fallen. To help him up, you pull
with a force F, as the drawing shows. The vertical component of
this force is 130 newtons, while the horizontal component is 150
newtons. Find (a) the magnitude of F and (b) the angle 6.

37. ssm The x vector component of a displacement vector r has
a magnitude of 125 m and points along the negative x axis. The y
vector component has a magnitude of 184 m and points along the
negative y axis. Find the magnitude and direction of r. Specify the
direction with respect to the negative x axis.

38. On takeoff, an airplane climbs with a speed of 180 m/s at an
angle of 34° above the horizontal. The speed and direction of the
airplane constitute a vector quantity known as the velocity. The
sun is shining directly overhead. How fast is the shadow of the
plane moving along the ground? (That is, what is the magnitude
of the horizontal component of the plane’s velocity?)

#39. The magnitude of the force vector F is 280 newtons. The x
component of this vector is directed along the +x axis and has a
magnitude of 150 newtons. The y component points along the +y
axis. (a) Find the direction of F relative to the +x axis. (b) Find
the component of F along the +y axis.

¥40. The vector A in the drawing has a magnitude of 750 units.
Determine the magnitude and direction of the x and y components

k41

+y

40.0° A

\30.0°
+x

of the vector A, relative to (a) the black axes and (b) the colored
axes.

ssm www The drawing shows a force vector that has a
magnitude of 475 newtons. Find the (a) x, (b) y, and (c) z compo-
nents of the vector.

Section 1.8 Addition of Vectors by Means of Components

42. You are on a treasure hunt and your map says “Walk due
west for 52 paces, then walk 30.0° north of west for 42 paces, and
finally walk due north for 25 paces.” What is the magnitude of the
component of your displacement in the direction (a) due north and
(b) due west?

43. A pilot flies her route in two straight line segments. The
displacement vector A for the first segment has a magnitude of
243 km and a direction 50.0° north of east. The displacement vec-
tor B for the second segment has a magnitude of 57.0 km and a
direction 20.0° south of east. The resultant displacement veetor is
R = A + B. What are the magnitude and direction of R? Use the
component method and specify the direction relative to due east.

44. The force vector F, has a magnitude of 45.0 newtons and
points 30.0° north of east. The force vector Fy has a magnitude of
75.0 newtons and points due north. Find the magnitude and direc-
tion of the resultant F, + F by using the component method.
Specify the direction relative to due east.

45. ssm A golfer, putting on a green, requires three strokes to
“hole the ball.” During the first putt, the ball rolls 5.0 m due east.
For the second putt, the ball travels 2.1 m at an angle of 20.0°
north of east. The third putt is 0.50 m due north. What displace-
ment (magnitude and direction relative to due east) would have
been needed to “hole the ball” on the very first putt?



46. On a safari, a team of naturalists sets out toward a research
station located 4.8 km away in a direction 42° north of east. After
traveling in a straight line for 2.4 km, they stop and discover that
they have been traveling 22° north of east, because their guide
misread his compass. What are (a) the magnitude and ¢b) the di-
rection (relative to due east) of the displacement vector now re-
quired to bring the team to the research station?

47. A football player runs the pattern given in the drawing by

the three displacement vectors A, B, and C. The magnitudes of

these vectors are A = 5.00 m, B = 15.0 m, and C = 18.0 m. Us-

ing the component method, find the magnitude and direction @ of

the resultant vector A + B + C.

. ]
] /35.0°
S SRS

A+|:+C“"“'—-§

48. A baby elephant is stuck in a mud hole. To help pull it out,
game keepers use a rope to apply force F,. as part a of the draw-
ing shows. By itself, however, force F, is insufficient. Therefore,
two additional forces Fy, and F. are applied, as in part b of the
drawing. Each of these additional forces has the same magnitude
F. The magnitude of the resultant force acting on the elephant in
part b of the drawing is twice that in part a. Find the ratio FIF,.

(a)
*49. ssm Vector A has a magnitude of 6.00 units and points due

(b)

east. Vector B points due north. (a) What is the magnitude of B, if

ADDITIONAL PROBLEMS
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the vector A + B points 60.0° north of east? (b) Find the magni-
tude of A + B.

*50. Two forces act on an object. One has a magnitude of 166
newtons and points at an angle of 60.0° above the +x axis. The
second has a magnitude of 284 newtons and points at an angle of
30.0° above the +x axis. A third force is applied and balances to
zero the effects of the other two. What are the magnitude and di-
rection of this third force? Specify the direction relative to the
negative x axis.

#51. Vector A has a magnitude of 188 units and points 30.0°
north of west. Vector B points 50.0° east of north. Vector C points
20.0° west of south. These three vectors add to give a resultant
vector that is zero. Using components, find the magnitudes of
(a) vector B and (b) vector C.

#52. A grasshopper makes four jumps. The displacement vectors
are (1) 27.0 cm, due west; (2) 23.0 cm, 35.0° south of west; (3)
28.0 cm, 55.0° south of east; and (4) 35.0 cm. 63.0° north of east.
Find the magnitude and direction of the resultant displacement.
Express the direction with respect to due west.

*53. ssm A sailboat race course consists of four legs, defined by
the displacement vectors A, B, C, and D, as the drawing indicates.
The magnitudes of the first three vectors are A = 3.20 km,
B = 5.10 km, and C = 4.80 km. The finish line of the course co-
incides with the starting line. Using the data in the drawing, find
the distance of the fourth leg and the angle 6.

Finish _[L Start

54.  The corners of an equilateral triangle lie on a circle that has
aradius of 0.25 m. What is the length of a side of the triangle?

55. A displacement vector A has a magnitude of 1.62 km and
points due north. Another displacement vector B has a magnitude
of 2.48 km and points due east. Determine the magnitude and di-
rection of (a) A + B and (b) A — B.

56. Consider the equation v = yzx’. The dimensions of the
variables x, v, and  are [L], [L]/[T], and [T], respectively. What
must be the dimensions of the variable z, such that both sides of

the equation have the same dimensions? Show how you deter-
mined your answer.

57. ssm The speed of an object and the direction in which it
moves constitute a vector quantity known as the velocity. An os-
trich is running at a speed of 17.0 m/s in a direction of 68.0° north
of west. What is the magnitude of the ostrich’s velocity compo-
nent that is directed (a) due north and (b) due west?

58.  One acre contains 43 560 ft>. How many square meters (m?)
are in one acre?
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59. Find the resultant of the three displacement vectors in the

drawing by means of the component method. The magnitudes of

the vectors are A = 5.00 m, B = 5.00 m, and C = 4.00 m.

20.0°

60. A frog hops four times: twice forward, once to the right, and
once forward again. Each hop covers a distance of 28 cm. What is
the magnitude of the frog’s displacement?

61. ssm Displacement vector A points due east and has a mag-
nitude of 2.00 km. Displacement vector B points due north and
has a magnitude of 3.75 km. Displacement vector C points due
west and has a magnitude of 2.50 km. Displacement vector D
points due south and has a magnitude of 3.00 km. Find the magni-
tude and direction (relative to due west) of the resultant vector
A+B+C+D.

#62. A displacement vector A has a magnitude of 636 m and
points 40.0° above the —x axis. Another displacement vector Bis
added to A. The resultant has the same magnitude as A, but the
opposite direction. Find (a) the x component and (b) the y compo-
nent of B.

#63. Consider the two vectors A and B in the drawing for prob-
lem 59. Determine (a) the vector sum A + B and (b) the vector
difference A — B using the method of components. In each case,
specify both magnitude and direction (relative to the negative x
axis).

#64. Three deer, A, B, and C, are grazing in a field. Deer B is lo-
cated 62 m from deer A at an angle of 51° north of west, Deer C is

located 77° north of east relative to deer A. The distance between
deer B and C is 95 m. What is the distance between deer A and C?
(Hint: Consider the law of cosines given in Appendix E.)

#63. Al a picnic, there is a contest in which hoses are used to
shoot water at a beach ball from three directions. As a result, three
forces act on the ball, F,, F,, and F; (see the drawing). The mag-
nitudes of F,; and F, are F|, = 50.0 newtons and F, = 90.0 new-
tons. Using a scale drawing and the graphical technique, deter-
mine (a) the magnitude of Fy and (b) the angle @ such that the
resultant force acting on the ball is zero.

60.0°

#66. Before starting this problem, review Conceptual Example 6.
The force vector F, has a magnitude of 90.0 newtons and points
due east. The force vector Fy, has a magnitude of 135 newtons and
points 75° north of east. Use the graphical method and find the
magnitude and direction of (a) Fy — Fj (give the direction with
respect to due east) and (b) Fy — F, (give the direction with re-
spect to due west).

%67, What are the x and y components of the vector that must be
added to the following three vectors, so that the sum of the four
vectors is zero? Due east is the +x direction, and due north is the
+y direction.

A = 113 units, 60.0° south of west

B = 222 units, 35.0° south of east

C

= 177 units, 23.0° north of east

-



